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Abstract. The ultrasonic logarithmic decrement and modulus defect in high purity copper crystals
was measured at 10, 30 and 50 MHz in the temperature interval 5–373 K. The samples were
deformed at room temperature in the 3–20% range along the〈111〉 crystallographic direction. The
experimental data were fitted over the whole interval of temperatures, assuming the contribution of
two kink mechanisms: (i) relaxation by kink pair formation with diffusion in the dislocation line
and (ii) overdamped resonance of the kink chain with a temperature dependent number of kinks
in the dislocation lines. With this procedure both primary and secondary properties of the high
frequency Bordoni peak could be satisfactorily explained. Numerical data are reported for peak
parameters and for the kink diffusion coefficient.

1. Introduction

In 1949 Bordoni [1], measuring the internal friction of some FCC cold-worked metals at
frequencies of∼1 MHz, observed a relaxation peak at low temperatures. This peak is known
as the Bordoni peak (BP), and was immediately related to the dislocations present in the
metal. Later this peak was studied experimentally almost exclusively through internal friction
measurements on a wide range of samples with different prior plastic deformation, cold work
or crystal source [2]. But only a few works were devoted to the high MHz BP in copper. The
most relevant ones are that by Niblett and Zein [3] for attenuation measurements at frequencies
630 MHz and the present authors [4] for frequencies up to 50 MHz and in the interval of
temperatures from 77 to 300 K.

In addition to the Bordoni peak there is a subsidiary peak at lower temperatures, first
reported for copper by Niblett and Wilks and often referred to as the Niblett–Wilks peak.
This peak is accepted as an inherent part of the relaxation phenomenon, closely related to
the Bordoni peak [5]. It is usually designed as the Bordoni peak 1 (BP1) and the principal
Bordoni peak as the Bordoni peak 2 (BP2). Although many efforts have been devoted
to the motion of dislocations in crystals, the dynamics of dislocation lines driven by an
oscillatory stress is not yet well understood [6]. In 1939 Peierls [7] made the first detailed
calculus of the shear stress necessary to move a linear dislocation through the crystal lattice
without thermal fluctuations (Peierls stress:σP ). In 1952 Shockley [8] proposed that the
existence of the Peierls potential should lead to the creation of kinks (i.e. short segments of
the dislocation line in which the dislocation goes from one Peierls valley to another one)
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and that they could be formed in thermal equilibrium. Later Seeger [9] considered that
the thermally activated formation of kink pairs of opposite sign in an external oscillatory
stress (KPF) would lead to an internal friction relaxation process. He also proposed that the
relaxation peak observed by Bordoni in 1949 [1] in some plastically deformed FCC metals
(known as the Bordoni peak (BP)) must be a consequence of this process. This model was
successful on the prediction of the peak occurrence but fails for the secondary properties of
the peak.

Seeger pointed out that also the Niblett–Wilks peak is due to KPF. The two types of
dislocation that may lie along a〈110〉 close packed direction originate both of the peaks in the
FCC lattice. These are: one for which the Burgers vector is parallel to the dislocation line (a
pure screw type) and the other for which the Burgers vector lies at±60◦ to the direction of the
dislocation line. These two types of dislocation should have different values for the formation
energy, and therefore for the activation energy for relaxation.

In 1981 Seeger [10] refined this first model including a kink diffusion mechanism in the
KPF. The main characteristic of this model is the prediction of the existence of an effective
activation enthalpy different for low and high temperatures and a temperature dependent
relaxation time in both pre-exponential and exponential terms. Although this model predicts
peaks broader than that obtained with the first model it is not complete enough to describe all
experimental data [5, 10]. Bujardet al [11] showed in 1987 that the signature of kinks obtained
from the KPF model closely corresponded to the internal friction obtained with the two-wave
coupled technique in Al. This fact was interpreted as evidence that the Bordoni relaxation is
originated by the KPF.

In addition to those kinks created by thermal activation, geometrical kinks [5] should be
considered in dislocation lines not entirely lying in a Peierls valley. In dislocation lines almost
parallel to crystallographic low index directions, fixed at pinning points situated in different
Peierls valleys, these kinks are present even at very low temperatures. In 1964 Suzuki and
Elbaum [12] considered that the kink chain could oscillate driven by an external oscillatory
stress, presenting a resonant behaviour. In 1965 Alefeldet al [13] refined the model and proof
that thermal kinks also should be included in the kink chain. These kinks should be produced
at high temperatures also for zero applied stress.

As we showed in 1994 [14] the ultrasonic logarithmic decrement and its associated
modulus defect should be considered as the superposition of this overdamped resonance and
the relaxation (by KPF) component.

In 1995 Marchesoni [15] presented an attractive calculation of the logarithmic decrement
in terms of kink mechanisms, in which the BP1, the BP2 and the background component are
produced by the nucleation of kink pairs and kink migration. The principal BP was attributed
to kink nucleation in the presence of a low density of geometrical kinks, in a similar way as
in Seeger’s model. The BP1 must be due to kink nucleation controlled by geometrical kinks,
with an activation energy approximately half of that corresponding to the BP2. However, this
model does not show the existence of the temperature dependence of the ‘effective’ activation
enthalpy predicted by Seeger. For reasonable distributions in dislocation lengths also the
predicted peaks remain thinner than those observed [15].

Finally, in 1996 Ulfert and Seeger [16] refined the KPF model taking into account the
influence of geometrical kinks in KPF with kink diffusion. Although they found that the low
frequency relaxation time was strongly dependent on internal stresses, the high frequency
relaxation remains with the same temperature dependence as the previous model (i.e. with
only thermal kinks in dislocation lines).

This paper is devoted to the measurement and result interpretation in terms of kink
relaxation (KPF with kink diffusion) and resonance mechanisms, of the 10 to 50 MHz
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logarithmic decrementδ and its associated modulus defect1M/M0 in high purity crystalline
copper deformed in the range of 3–20%.

2. Experimental procedure

Four samples were prepared in a cubic form of approximately 1 cm side. All of them were cut
from the same batch of crystals of high purity copper (RRR∼= 1500). They were oriented in
the〈111〉 crystallographic direction better than 1◦, controlled by the Laue method.

The two faces used for ultrasonic measurements, with parallelism 10−4 rad, were polished
with SiC and left in vacuum at 650◦C for 5 hours. The deformation at room temperature in the
〈111〉 direction was performed by compression in one step and then left for 1 hour at 100◦C.
Each sample was prepared with a definite plastic deformation: 3, 5, 10 and 20%.

Ultrasonic attenuation and velocity were simultaneously measured using the conventional
pulse-echo method [17]. This method was chosen because it enables the measurement of
the attenuation and the velocity of pulses in the same sample for several frequencies. The
elapsed time for a pulse round trip was accurately determined through the pulse-echo-overlap
technique [18]. Nonaq stopcock grease was used as bonding between the quartz transducer
(10 MHz fundamental frequency and 6.25 mm diameter) and the samples. All measurements
were performed by cooling the sample from 373 K to 5 K, at a maximum rate of 1 K min−1.
After each cooling the sample was left at 100◦C for 1 hour.

The logarithmic decrementδ and the modulus defect1M/M0 were calculated with the
following equations:

δ = 0.115
α − α0

f (MHz)
(1)

1M

M0
= v2 − v2

0

v2
0

(2)

wheref (MHz) = wave frequency expressed in megahertz;α0 = attenuation andv0 =
velocity of ultrasonic pulses measured in a dislocation-free sample (background);α =
attenuation andv = velocity of ultrasonic pulses measured in the non-irradiated samples.
Eiras [19] measuredα0 andv0 in a 〈111〉 non-deformed copper sample, irradiated withγ -rays
until total pinning of dislocations. We assume this background, including its temperature
dependence, valid for our deformed samples.

3. Experimental data

In figure 1 we present the attenuation versus temperature measured in our samples, at
frequencies of 10, 30 and 50 MHz. This figure show the presence of the two peaks known in
the literature [5, 6] as the BP1 (or Niblett and Wilks peak) and BP2 (or Bordoni peak). The BP1
is observed at lower temperatures than the BP2, and it is always smaller than the BP2. Outside
the peak, the ‘hot’ side of the BP2 shows an increase of the attenuation with temperature.
At temperatures below 50 K an increment in attenuation was observed, which is stronger for
higher frequencies. It is attributed in the literature [5] to the interaction of dislocation lines
with the free electrons in the crystal.

In figure 2 we present representative curves of the modulus defect and its associated
logarithmic decrement plotted versus temperature. All the modulus defect curves show the
characteristic step of a relaxation process [5], the largest for the 20% deformed sample.
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Figure 1. Ultrasonic attenuation as a function of temperature, measured at 10, 30 and 50 MHz in
samples deformed by compression in〈111〉 between 3 and 20%. The sample was cooled at a rate
of 1 K min−1.

4. Theoretical considerations

As we show in this paper, the logarithmic decrement and the modulus defect are well fitted if
they are considered to be due to the simultaneous contribution of both relaxation and resonance
of dislocations in the crystal. The dislocation relaxation is considered to be composed of two
individual relaxation components for the BP1 and the BP2, the resonance being a single process
for the whole interval of temperatures studied in this report. The two relaxation peaks, as Seeger
earlier pointed out, originate in the FCC lattice from the two types of dislocation which may lie
along a〈110〉 close packed direction. There is one for which the Burgers vector is parallel to
the dislocation line (a pure screw type) and the other for which the Burgers vector lies at±60◦

to the direction of the dislocation line. These two types of dislocation should have different
values for the formation energy and therefore for the activation energy for relaxation.

Each relaxation component is considered to be originated by kink pair formation (KPF).
Assisted by the external stress the kink pairs are formed in thermal equilibrium by thermal



The ultrasonic Bordoni peak in copper crystals and the kink picture 863

0,0085

0,0100

0,0125

0,0150

0,0175

0,0200

0,0225

M
o

d
u

lu
s d

e
fe

ct

3  %

30 M Hz

5 100 200 300
0,002

0,003

0,004

0,005

0,006

0,007

L
o

g
a

ri
th

m
ic

 d
e

cr
e

m
e

n
t

Temperature  (K)

0,010

0,015

0,020

0,025

0,030

M
o

d
u

lu
s d

e
fe

ct

5  %

30 M Hz

5 100 200 300
0.0015

0,002

0,003

0,004

0,005

0,006

0,007

L
o

g
a

ri
th

m
ic

 d
e

cr
e

m
e

n
t

Temperature  (K)

0,0060

0,0075

0,0100

0,0125

L
o

g
a

ri
th

m
ic

 d
e

cr
e

m
e

n
t

� ��� ��� ���

0,025

0,030

0,035

0,040

0,045

0,050
M

o
d

u
lu

s d
e

fe
ct

Temperature  (K )

10 %

30 M H z

0,080

0,085

0,090

0,095

0,100

0,105

0,110

0,115

M
o

d
u

lu
s d

e
fe

ct

5 100 200 300
0,003

0,005

0,010

0,015

0,020
20 %

50 M H z

L
o

g
a

ri
th

m
ic

 d
e

cr
e

m
e

n
t

Temperature  (K )

Figure 2. Some representative logarithmic decrements and associated modulus defects as a function
of the temperature, for the samples of figure 1.

activation. In agreement with Seeger [10] the relaxation time associated with this process is
given by

τ = kBL

πwkHk

T

Dk

(1 +ρeqk L/2)

(ρ
eq

k )
2

(3)

whereL = average free length of segment of the dislocation line;wk = kink width;Hk = half
the activation enthalpy of the formation of kink pairs;Dk = kink diffusion coefficient and
ρ
eq

k = average density of kinks in thermal equilibrium on the dislocation. For temperatures
aboveθD2a/πwk = 44 K (θD = 343 K = Debye temperature of copper;a = interatomic
distance in the dislocation line direction andwk = 20a), the high temperature approximation
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for ρeqk is applied,

ρ
eq,ht

k = 1

wk

(
2πHk
2kBT

)
exp

(−Hk
kBT

)
. (4)

In agreement with equation (3) the activation enthalpy appears depending on temperature and
should be calculated as an effective enthalpy,

Hef = d(ln τ)

d(1/kBT )
. (5)

Equation (5) has two important approximations: low temperatures (ρ
eq

k L � 1) for which
Hef = 2Hk−2kBT

∼= 2Hk, and high temperatures (ρeqk L� 1) for whichHef = Hk− 3
2kBT

∼=
Hk. These approximations point out an important feature predicted by the model: the
effective activation energy is very different for the low and high frequency BP. As proposed by
Seeger [10], the effective high temperature activation energy closely corresponds to the energy
necessary to create an isolated kinkWk, and the low temperature one to the energy necessary
to create a kink pair, 2Wk.

A second important feature is due to the temperature dependence of the pre-exponential
relaxation time coefficient: the obtained relaxation peak should be broader than a single Debye
peak [10]. This fact becomes very important considering that experimental BPs are broader
than a Debye peak, as we showed earlier [14].

The temperature behaviour of the modulus defect outside the peak region strongly
suggested the existence of a resonant component superposed on the relaxation. In terms
of kinks, this resonant mechanism should be attributed to the kink chain (formed by geometric
and thermal kinks) oscillations.

As proposed by Alefeldet al [13], thermal kinks will be produced without an applied
stress at temperatures above the critical temperatureTc

Tc =
(
Hk

kB

)
ln

[
2a(1 +N0)

1/2

AL

]
. (6)

We assume that these kinks should contribute to the kink chain resonance, given a temperature
dependence of kink density for temperatures aboveTc. This temperature, calculated by Alefeld
[13], is around 115 K for copper ifN0 ≈ 15 is assumed.

Due to the simultaneous contributions of both relaxation 1 and 2 and the resonance, the
general expression for the modulus defect and logarithmic decrement becomes,

1M

M0
(T ) =

(
1M

M0

)
B1

+

(
1M

M0

)
B2

+

(
1M

M0

)
RESONANCE

= 1B1
1

1 + (ωτ1)2
+1B2

1

1 + (ωτ2)2
+A1N(T )L

2 +
1M

M0

= 1B1
1

1 + (ωτ1)2
+1B2

1

1 + (ωτ2)2
+B1T +

1M

M0
(7)

δ(T ) = δ(T )B1 + δ(T )B2 + δ(T )RESONANCE

π1B1
ωτ1

1 + (ωτ1)
+ π1B2

ωτ2

1 + (ωτ2)
+A2N(T )L

4ωB(T ) + δ0

= π1B1
ωτ1

1 + (ωτ1)
+ π1B2

ωτ2

1 + (ωτ2)
+B2T

2 + δ0 (8)

τ1/2 = B3(1/2)(kBT )
3/2 exp

(
Hk(1/2)

kBT

)
(9)

where1B1/2 are the Bordoni relaxation intensity of the BP1 and BP2 relaxation respectively,ω

is the wave angular frequency andA1,A2,B1,B2 andB3(1/2) are constants which depend on the
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Figure 3. Some representative fits of modulus defect with the equations (7) and (9). The BP1 and
BP2 relaxation are shown separately. The sum of BP1 and BP2 is also shown.

material and the dislocation structure. Different activation enthalpiesHk(1/2) are considered
for the relaxation 1 and 2, respectively.

As we previously showed [14] the behaviour of the logarithmic decrement and modulus
defect near room temperature strongly suggest that a low frequency approximation for the
overdamped resonance should be considered. In this approximation they become [12]

δ ∝ N(T )L4ωB(T ) (10)

1M/M0(T ) ∝ N(T )L2. (11)

The modulus defect in equation (11) is only dependent on temperature throughN(T ). As the
experimental modulus defect increases approximately linearly above BP2 temperatures, we
assumed forN(T ) a direct proportionality withT . This relation is used in this report for fitting
purposes in all the temperature range investigated. For the overdamped coefficient for copper
Eiras [19] found experimentallyB(T ) ∝ T .

As is well known [5], in the overdamped resonance of the kink chain the mass term
becomes unimportant and the dynamical behaviour becomes that for a standard anelastic solid
as reflected in our equations for the resonance.
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Figure 4. Some representative fits of logarithmic decrement with equations (8) and (9), for the
samples of figure 1. The relaxations BP1 and BP2 and the resonance component are shown
separately. The traced curve represents the sum of BP1 and BP2.

5. Fits and discussion

Figures 3 and 4 show typical curves of the modulus defect and logarithmic decrement versus
temperature, respectively, fitted with equations (7) to (9). All fits in this paper were realized
using a standard fitting program.

Figure 3 points to the importance of the resonant mechanism responsible for the variation
of the modulus defect outside the step region of kink relaxation and the assumptionN(T ) ∝ T
is justified in the temperature range investigated in this paper. From these fits primary values
for the relaxation intensity were obtained, which were then used in the fits performed over
logarithmic decrement allowing only minor variations in this parameter.

All fitted curves in figure 4 look very close to the experimental data. As we showed [14],
if a simple Debye relaxation time is considered for Bordoni relaxation taking a similar addition
of mechanisms, the experimental peaks are always broader than the fitted peaks. This problem
is now resolved, the relaxation time becoming very important in equation (9).
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Figure 4. (Continued)

In figure 5 we show an Arrhenius plot with peak temperatures assembled for copper from
[1, 20–31] and those obtained by us for high temperatures and for low temperatures in samples
cut from the same crystal batch [4, 32]. The peak temperatures in this plot run from 50 K to
170 K covering the lowest and the highest peak temperatures achieved from Bordoni peaks.
This plot is well fitted with the relaxation time for the KPF mechanism (equations (3) and (4)).
In this fitHk andDk were left to freely vary with the other parameters closely kept on values
L ∼ 104a, wk ∼ 20a anda ∼ 3.5× 10−8 cm [33]. The estimated parameters from this fit
are:Hk = (0.075± 0.001) eV andDk = (2.91± 0.07) cm2 s−1.

The most important feature of this fit is the existence of an ‘effective’ activation enthalpy,
which varies from 0.075 eV for the highest temperatures to 0.15 eV for the lowest temperatures.
In the literature for the BP in copper the commonly accepted value for 2Hk is 0.12 eV [5, 6],
which is 25% lower than obtained in this paper.

The existence of this ‘effective’ activation energy lets us disregard the model proposed by
Marchesoni [15] because it does not predict this well confirmed behaviour.

The Peierls stressσP can be evaluated from the line tension model and experimental data
for the activation energy [6]. With 2Hk = 0.1 eV for copper, Benoitet al [34] obtained
σP = 20 MPa. With the activation energy of 0.15 eV obtained by us the same calculus leads
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Figure 5. Arrhenius plot for copper and its fitted curve (equations (3) and (4)). The peak
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Figure 6. Relaxation intensity for copper as a function of the plastic deformation. The relaxation
intensity was obtained from the BP2 fitted relaxation component (equations (8)).

to σP = 30 MPa. These values are too high if compared with the critical resolved shear stress
(σ0) for copper measured near liquid helium temperature∼1 MPa [6]. This discrepancy leads
to some doubts about the interpretation of the BP in terms of KPF, because at low temperatures
the formation of thermal kinks becomes negligible and then the critical resolved shear stress
should equal the Peierls stress. Benoitet al [34] explained this difference, proposing the
existence of a short-circuit mechanism for dislocation lines, originating in kinks formed in
partial dislocations in the presence of point defects. Later Gremaudet al [35] refined this
mechanism. In order to obtain an independent value of the Peierls stress, we also calculated
σP by computational techniques, finding a value close to 30 MPa for copper [36]. Nevertheless
this point remains as one for further discussion and some authors, such as Schoeck [37] and
Okuda [38], pointed out the importance of partial dislocations present in FCC crystals in
explaining the difference betweenσP andσ0.

In figure 6 we present a plot of the relaxation intensity versus sample deformation. The
relaxation intensity was obtained from the component BP2 in each fitted curve on logarithmic
decrement, which are accurate values also for those curves presenting high asymmetry. This
figure shows the relaxation intensity decreasing between 3 and 5% and then increasing
monotonically with the sample deformation in the interval from 5 to 20%. The minimum
in the relaxation intensity at 5% corresponds to the minimum previously observed in the peak
temperature at this deformation [19].
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The peak width is calculated from the logarithmic decrement relaxation component as
(E/kB)(1/T1 − 1/T2). E is the activation energy of the process, obtained as the ‘effective’
energy from the Arrhenius plot, andT1 andT2 are the temperatures at which the logarithmic
decrement falls to 0.5 times the peak value. A width of 1.3 times the Debye peak for every
BP2, independent of sample deformation and frequency, is obtained.

6. Conclusions

• A good agreement between ultrasonic logarithmic decrement and modulus defect
experimental data and the model proposed in this paper is obtained, corresponding to
the simultaneous contribution of KPF with kink diffusion and the overdamped resonance
of the kink chain. It takes into account the primary and the secondary properties of the
ultrasonic BP.
• Half the activation enthalpy of the formation of kink pairsHk = (0.075± 0.001) eV.

The temperature-dependent ‘effective’ activation enthalpy ranges from 0.075 eV at high
frequencies to 0.15 eV at low frequencies.
• The peak width, 1.3 times the Debye peak, is independently obtained from sample

deformation and frequency.
• The relaxation intensity shows a slight minimum at approximately 5% and a monotonic

increase with sample deformation in the investigated range (<20%).
• The kink diffusion coefficient for copper crystals isDk = (2.91± 0.07) cm2 s−1.
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